Environmental Protection Agency

below 50 grains, or to 75 grains (10.71 g/kg) if above 75 grains.

- (ii) NO_X and PM emissions shall be corrected for ambient air temperature to a temperature of 55 degrees F (12.8 degrees C) for ambient air temperatures below 55 degrees F or to 95 degrees F (35.0 degrees C) if the ambient air temperature is above 95 degrees F.
- (iii) No ambient air temperature or humidity correction factors shall be used within the ranges of 50–75 grains or 55–95 degrees F.
- (iv) Where test conditions require such correction factors, the manufacturer must use good engineering judgement and generally accepted engineering practice to determine the appropriate correction factors, subject to EPA review.
- (2) For engines operating within the ambient conditions specified in §86.007–11(a)(4)(ii)(b):
- (i) NO_X emissions shall be corrected for ambient air humidity to a standard humidity level of 50 grains (7.14 g/kg) if the humidity of the intake air was below 50 grains, or to 75 grains (10.71 g/kg) if above 75 grains.
- (ii) $\mathrm{NO_X}$ and PM emissions shall be corrected for ambient air temperature to a temperature of 55 degrees F (12.8 degrees C) for ambient air temperatures below 55 degrees F.
- (iii) No ambient air temperature or humidity correction factors shall be used within the ranges of 50–75 grains or for temperatures greater than or equal to 55 degrees F.
- (iv) Where test conditions require such correction factors, the manufacturer must use good engineering judgement and generally accepted engineering practice to determine the appropriate correction factors, subject to EPA review.
- (f) NTE cold temperature operating exclusion. Engines equipped with exhaust gas recirculation (EGR) whose operation within the NTE control area specified in §86.1370(b) when operating during cold temperature conditions as specified in paragraph (f)(1) of this section are not subject to the NTE emission limits during the specified cold temperature operation conditions.
- (1) Cold temperature operation is defined as engine operating conditions

meeting either of the following two criteria:

(i) Intake manifold temperature (IMT) less than or equal to the temperature defined by the following relationship between IMT and absolute intake manifold pressure (IMP) for the corresponding IMP:

$P = 0.0875 \times IMT - 7.75$ Equation (1)

- P = absolute intake manifold pressure in bars.
- IMT = intake manifold temperature in degrees Fahrenheit.
- (ii) Engine coolant temperature (ECT) less than or equal to the temperature defined by the following relationship between ECT and absolute intake manifold pressure (IMP) for the corresponding IMP:

$P = 0.0778 \times ECT - 9.8889$ Equation (2)

P = absolute intake manifold pressure in bars.

ECT = engine coolant temperature in degrees Fahrenheit.

- (2) [Reserved]
- (g) NO_X and NMHC aftertreatment warm-up. For engines equipped with one or more aftertreatment devices that reduce NO_X or NMHC emissions, the NTE NO_X and NMHC emission limits do not apply when the exhaust gas temperature is measured within 12 inches of the outlet of aftertreatment device and is less the 250 °C. For multi-bed systems, it is the temperature at the outlet of the device with the maximum flow rate that determines whether the NTE limits apply.

[65 FR 59961, Oct. 6, 2000, as amended at 66 FR 5188, Jan. 18, 2001; 70 FR 40441, July 13, 2005; 75 FR 68457, Nov. 8, 2010]

§86.1372-2007 Measuring smoke emissions within the NTE zone.

This section contains the measurement techniques to be used for determining compliance with the filter smoke limit or opacity limits in §86.007–11(b)(1)(iv).

(a) For steady-state or transient smoke testing using full-flow opacimeters, equipment meeting the requirements of subpart I of this part

§ 86.1375-2007

- or ISO/DIS-11614 "Reciprocating internal combustion compression-ignition engines—Apparatus for measurement of the opacity and for determination of the light absorption coefficient of exhaust gas" is required. This document is incorporated by reference (see §86.1).
- (1) All full-flow opacimeter measurements shall be reported as the equivalent percent opacity for a five inch effective optical path length using the Beer-Lambert relationship.
- (2) Zero and full-scale (100 percent opacity) span shall be adjusted prior to testing.
- (3) Post test zero and full scale span checks shall be performed. For valid tests, zero and span drift between the pre-test and post-test checks shall be less than two percent of full-scale.
- (4) Opacimeter calibration and linearity checks shall be performed using manufacturer's recommendations or good engineering practice.
- (b) For steady-state testing using a filter-type smokemeter, equipment meeting the requirements of ISO/FDIS-10054 "Internal combustion compression-ignition engines—Measurement apparatus for smoke from engines operating under steady-state conditions—Filter-type smokemeter" is recommended. Other equipment may be used provided it is approved in advance by the Administrator.
- (1) All filter-type smokemeter results shall be reported as a filter smoke number (FSN) that is similar to the Bosch smoke number (BSN) scale.
- (2) Filter-type smokemeters shall be calibrated every 90 days using manufacturer's recommended practices or good engineering practice.
- (c) For steady-state testing using a partial-flow opacimeter, equipment meeting the requirements of ISO-8178-3 and ISO/DIS-11614 is recommended. Other equipment may be used provided it is approved in advance by the Administrator.
- (1) All partial-flow opacimeter measurements shall be reported as the equivalent percent opacity for a five inch effective optical path length using the Beer-Lambert relationship.
- (2) Zero and full scale (100 percent opacity) span shall be adjusted prior to testing.

- (3) Post-test zero and full scale span checks shall be performed. For valid tests, zero and span drift between the pre-test and post-test checks shall be less than two percent of full scale.
- (4) Opacimeter calibration and linearity checks shall be performed using manufacturer's recommendations or good engineering practice.
- (d) Replicate smoke tests may be run to improve confidence in a single test or stabilization. If replicate tests are run, three additional tests which confirm to this section shall be run, and the final reported test results must be the average of all the valid tests.
- (e) A minimum of thirty seconds sampling time shall be used for average transient smoke measurements. The opacity values used for this averaging must be collected at a minimum rate of 1 data point per second, and all data points used in the averaging must be equally spaced in time.

[65 FR 59962, Oct. 6, 2000]

§ 86.1375–2007 Equipment specifications for field testing.

For testing conducted with engines installed in vehicles, including field testing conducted to measure emissions under Not-To-Exceed test procedures, use the test procedures and equipment specified in 40 CFR part 1065, subpart J.

 $[70~{\rm FR}~34619,~June~14,~2005]$

$\S 86.1380-2004$ Load response test.

- (a) General. This section applies to 2004 through 2007 model year heavyduty diesel engines. The purpose of this test procedure is to measure the brakespecific gaseous and particulate emissions from a heavy-duty diesel engine as it is suddenly loaded, with its fueling lever, at a given engine operating speed. The results of this test procedure are not compared to emission standards, and this test is not considered part of the Federal Test Procedure. This procedure shall be conducted on a dynamometer.
- (b) Test conditions and equipment. All laboratory conditions, laboratory equipment, engine set-up procedures,